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In photonic crystals the propagation of light is governed by their photonic band structure, an en-
semble of propagating states grouped into bands, separated by photonic band gaps. Due to discrete
symmetries in spatially strictly periodic dielectric structures their photonic band structure is intrin-
sically anisotropic. However, for many applications, such as manufacturing artificial structural color
materials or developing photonic computing devices, but also for the fundamental understanding
of light-matter interactions, it is of major interest to seek materials with long range non-periodic
dielectric structures which allow the formation of isotropic photonic band gaps. Here, we report
the first ever 3D isotropic photonic band gap for an optimized disordered stealthy hyperuniform
structure for microwaves. The transmission spectra are directly compared to a diamond pattern
and an amorphous structure with similar node density. The band structure is measured experi-
mentally for all three microwave structures, manufactured by 3D-Laser-printing for meta-materials
with refractive index up to n = 2.1. Results agree well with finite-difference-time-domain numerical
investigations and a priori calculations of the band-gap for the hyperuniform structure: the diamond
structure shows gaps but being anisotropic as expected, the stealthy hyperuniform pattern shows
an isotropic gap of very similar magnitude, while the amorphous structure does not show a gap
at all. The centimeter scaled microwave structures may serve as prototypes for micrometer scaled
structures with bandgaps in the technologically very interesting region of infrared (IR).

I. INTRODUCTION

The manipulation of light propagation by employ-
ing periodic dielectric structures is widely used in
technology, e.g in dielectric mirrors and anti-reflection
coatings. For this purpose, 1D periodic structures reflect
or transmit only a narrow part of the electromagnetic
spectrum due to Bragg-scattering. Bragg-scattering
strongly depends on the orientation of the structure with
respect to the incident wave and is thus intrinsically
anisotropic. The generalization to 3D structures leads
to so called photonic crystals with stop bands for the
propagation of light in various directions of the given
Brillouin zone in close analogy to electronic band gap
formation [1–3]. Here, the typical length scale is given by
the Bragg condition, thus the dielectric meta-material is
structured on a scale comparable to the electromagnetic
wavelength: centimeter range for microwaves and sub
micron range for visible light.

∗ corresponging author: peter.keim@ds.mpg.de

Two-dimensional photonic structures exhibiting a
complete photonic band gap, for both TE and TM
polarizations, are rather challenging to realize. This is
because, even for periodic structures, the architectures
needed are rather different, TM-polarization photonic
band gap opening very easily in isolated scatterer
architectures, whereas the optimal favoured architecture
for opening of TE-polarization band gaps consists of
connected dielectric network structures. Complete
bandgaps in 2D can be opened in structures which
reach a compromise between the two architectures and
consist of dielectric scatterers connected by narrow
dielectric veins [4–6] but the largest complete gaps
reach a rather modest size of just 15% of the midgap
frequency for silicon-air index of refraction contrast
[5]. In contrast, three dimensional photonic structures
based on a diamond-network architecture are naturally
adapted for the opening of complete photonic band gaps
and can reach band gaps of about 30% of the midgap
frequency for the same index of refraction contrast [7].
However, as is the case with all periodic structures, the
high-symmetry directions in the underlying FCC lattice,
induces strongly anisotropic photonic band gaps.
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a) b) c)

FIG. 1. Excerpts of the three cylinder model structures under investigation. a): a diamond pattern, possessing a well known
but anisotropic band structure b): the optimized stealthy hyperuniform pattern with isotropic band structure, c): an isotropic
pattern generated from an amorphous glassy seed pattern from Monte-Carlo simulations for comparison.

For technological applications but also from a fun-
damental point of view it is of enormous interest
to find materials with isotropic photonic band gaps
where the photonic density of states disappears in
all directions. It has been long argued that isotropic
band gaps will form in dielectric meta-materials whose
structure is itself isotropic [8]. So called hyperuniform
structures [6], where the structure factor vanishes in
the long-wavelength limit were tested to have a band
gap in 2D for microwaves [9–11]. For a D-dimensional
point pattern in a D-dimensional spherical sampling
window with radius R, hyperuniformity is defined as the
number variance of points contained within the spherical
window, σ(R) when averaged over all possible positions
of the window within the domain being considered. The
point pattern is hyperuniform if σ(R) grows as RD−1;
that is the number variance is proportional to the surface
area of the sampling window rather than its volume
as is the case of e.g. Poisson point patterns [12, 13].
Hyperuniform point patterns include all photonic crys-
tals, quasicrystals and a subset of disordered structures.
They possess zero density fluctuations on infinite length
scales within the structure so their structure factor S(k)
vanishes for k → 0.

For relatively large refractive indices, Muller et. al.
and Aeby et al. have demonstrated 3D emergent
isotropic band gaps in the near infrared [14–16]. Their
structures are based on disordered jammed packings
that are hyperuniform and nearly stealthy. Beside
hyperuniformity, the optimization of short range order
to tailor Bragg scattering at the Brillouin zone is of
key importance, too [17, 18]. Furthermore, internal
Mie-resonances within the high-index material (spheres
or cylinders) affect the photonic density of states [19–21].
To characterize the short range order, Sellers et al. in-
troduced the concept of local self-uniformity in cylinder
based structures, where Mie-resonances within the

cylinders have to interfere constructively with the struc-
tural arrangement of the cylinders [22]. 3D Amorphous
structures with diamond-like local tetrahedral order
were investigated numerically [23] and experimentally
in the microwave regime [24] showing photonic band
gaps which were compared to diamond structures. It is
important to stress the differences in the size of the PBG
when comparing disordered non-stealthy hyperuniform
structures to their stealthy hyperuniform counterparts as
the system size increases. A comprehensive 2D study of
disordered structures that range from nonhyperuniform
to standard hyperuniform and stealthy hyperuniform
ones revealed that the apparent PBGs rapidly close
as the system size increases. This is for all disordered
networks under consideration, except for the stealthy
hyperuniform structures where the PBG persists [25].
For the same reasons, we expect that 3D stealthy hype-
runiform dielectric networks have such PBG superiority.

In the present work, we investigate three photonic
structures composed of an interconnected tetravalent
network of cylinders a) of an anisotopic diamond lattice,
b) an optimized isotropic and stealthy hyperuniform
structure, and c) an isotropic network structure con-
structed from a glassy, random hard sphere packing seed
pattern obtained from computer simulations. Figure 1
visualizes the three structures with the diamond-
structure in blue, the stelathy hyperuniform pattern
in green and the disordered pattern in red. For the
diamond structure (blue) we expect a band structure but
being strongly directional. The isotropic glass structure
(red) is constructed for comparison and as reference
for the optimized hyperuniform structure (green). In
analogy with periodic structures, we define a length
scale a = L/ 3

√
N such that an N-point pattern in a cubic

box of side length L has a scatterer density of 1/a3.
Samples are shown in a cube of L = 4 × a side length,
while the investigated structures in the spectrometer
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FIG. 2. Two-point correlation function (a) and structure factor (b) for the optimized stealthy hyperuniform point pattern
constructed from an N = 1000 CRN model, with χ = 0.03. For stealthyness, the structure factor is forced to zero for ka < 1.
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FIG. 3. Band structure for dielectric-rod decorated optimised hyperuniform structures for contrast of the indices of refraction
corresponding to (a) composite of alumina n = 1.8, and (b) composite of titania n = 2.1. While for n = 1.8 only a dip in the
DOS is visible, a small but complete and isotropic band gap opens up for n = 2.1. The band structure and density of states
are calculated for a sample hyperuniform network of 1000 vertices decorated with dielectric rods of radius r/a = 0.3 contained
in a [10× a]3-supercell.

have a side length of L = 10× a .

The optimized hyperuniform structure was con-
structed by combining continuous random networks
(CRN) inspired by models of amorphous silicon
[23, 26, 27] and hyperuniformity concepts [6, 12, 13, 22].
The CRN structures are generated by annealing a
completely random four-fold coordinated network using
the Wooten-Winer-Weaire (WWW) algorithm [28, 29].
The algorithm proceeds by introducing coordination-
preserving Stone-Wales defects at random positions
in the structure followed by subsequent relaxation of
the structure with a Keating potential to minimize the
spread in the distributions of the next-neighbour particle
distance and the angles made by the tetrahedral bonds
in the network (typical values for standard deviations
of the distributions for optimised CRN are around
σd ≈ 5% and σθ ≈ 9%) [22, 30]. While the continu-

ous random network structures obtained through the
Wooten-Winer-Weaire algorithm present well-defined
short-range order, they are not yet hyperuniform. For
photonic applications [6], we are interested in an opti-
mized subcategory of hyperuniform structures, namely
“stealthy” hyperuniform structures [12, 13].

For stealthy hyperuniform point patterns, the struc-
ture factor S(k) is statistically equal to zero for a finite
range of wave numbers smaller than a certain critical
wave vector kC , i.e., S(k < kC) = 0. The stealthiness
parameter χ = M/3N is defined as the ratio between
the number of k vectors for which the structure factor
is constrained to vanish, M , and the total number of
k vectors associated with the pattern, 3N (with N the
number of points in the pattern). Here, we employ con-
tinuous random networks generated by using the WWW
algorithm; the structures are subsequently made hyper-
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FIG. 4. Sketch of the setup to measure the transmittance through macroscopic photonic structures. It consists of a vector
network analyzer (VNA), two horn antennas, and a 1 m wave-guide with a 10 cm quadratic aperture in a 1 m2 beam block. The
samples are put in the middle of the waveguide. The position of the left antenna relative to the waveguide can be adjusted with
a linear stage in the range of 0.1m to 0.38m, the distance of the right antenna to the waveguide is 0.4m. 100 measurements
are averaged at different positions of the left antenna.

uniform by forcing the structure factor at a fixed number
of k values to vanish. To maintain the well-defined short-
range order associated with the CRN we employ only a
small number of wavenumbers. In Fig. 2, we present
the two-point correlation function, g2(r) and the struc-
ture factor S(k), for an N = 1000 optimised stealthy
hyperuniform pattern. Here, we enforce the structure
factor to vanish for the smallest 100 k values around
the origin (i.e. χ = 100/3000 ≈ 0.03). In Fig. 3, we
present the corresponding band structure and density of
states calculations for a structure built by decorating the
hyperuniform point pattern with dielectric rods of vari-
ous indices of refraction. The original stealthy hyperuni-
form point pattern is generated under periodic boundary
conditions, and the band structure was calculated using
a supercell approximation. The refractive indices were
chosen to map the experimental accessible ones. While
for n = 1.8, only a dip in the density of states around
f = 0.75 (in units of c/a) is visible, for n = 2.1 a com-
plete and isotropic gap opens up around f = 0.34. The
width of the gap is 0.6%. We note that for higher refrac-
tive indices, e.g. n = 3.4 the gap width increases up to
14% and is centered at f = 0.24c/a (not shown here).
As shown in Fig. 3b), the band-gap is independent of
the orientation of the wave-vectors and it is isotropic as
intended.

A. Experimental and Numeric Results

Macroscopic structures given by cubes with 100mm
side-length and operational wavelengths of about 30mm
where manufactured, corresponding to frequencies in the
10GHz range. This is inspired by the seminal work of

Yablonovitch [7] and previous applications to photonic
amorphous diamonds [23, 24]. All three structures where
realized with a 3D printer using selective laser sintering
(SLS) of a compound material. This compound material
consists of a polymer (Nylon) with additives of high
refractive index materials as Al2O3 and TiO2. The
mass ratio of the oxides in Nylon were increased up to a
value until SLS printing failed to produce a mechanical
stable object. For Al2O3, a refractive index of about
n = 1.8 was accessible, while for TiO2 we manufactured
samples with n = 2.1 in the given frequency range of
the micro-waves. Details on the printing procedure are
given in section IIA.

The transmittance of the samples is measured by
placing the sample in a wave guide that just fits the
sample, as sketched in Figure 4. Two antennas emit
respectively receive linear polarized electromagnetic
radiation from 0.5GHz to 13.5GHz, as controlled by a
vector network analyzer. More details about the setup
are given in section II B. Images of the laser-sintered
diamond structures are shown in the insets of Figure 5
along with the measured transmittance curves (blue)
and the numerically calculated ones (orange) using the
software package meep, as described in section IID.
The diamond structure made of Al2O3 is investigated
in (100) direction while the TiO2 is analysed in (111)
direction. Both structures acts as proof of principle for
the experimental setup. The positions and depth of the
gaps coincide very well in both directions for the given
refractive indices. Note, that for the (111) direction with
n = 2.1, the transmission is reduced by almost three
orders of magnitude at a frequency of f = 0.34c/a. The
experimental transmission (blue) is smaller compared
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FIG. 5. Results of transmission measurements for two macroscopic realizations of the meta-material of diamond. Spectra are
taken in two different directions of the lattice and for two different refractive indices n = 1.8 and n = 2.1. The cubic samples
have a side-length of 10 cm. The Al2O3 samples suffer from mechanical damage due to their brittleness, as exemplary shown
in the inset image of the diamond in a). The peak position as well as the depth of the peak coincide well for both refractive
indices and orientations of the diamond lattice.

to numerical data (orange), since a) it contains some
absorption which is absent in the simulation and b) the
antennas naturally only transmit (or receive) within a fi-
nite angle. Thus losses are expected via radiation beside
the ”optical” axis. This is different in the simulation,
where the flux planes detects radiation in and from all
directions and metallic boundary conditions are applied
perpendicular to the optical axis.

The dark spectrum of the setup is shown as the
grey area at the bottom of each spectrum. It is the
experimentally minimal detectable signal of the given
device. It reflects the dynamic range of the vector
network analyzer, the efficiency of the antenna and
the mode-structure of the wave-guide. As function of
frequency, the dynamic range of the setup is determined
to be 30 − 40dB. To gain insight about the sensibility
of the device with respect to the local geometry, one
antenna was mounted on a linear stage (along the
optical axes) and data were taken at about 100 different
positions of the antenna. The shaded blue region of the
experimental data denotes the standard deviation from
averaging about this 100 positions. As can be seen in
Figure 5, the measurement is rather stable with regards
to linear translation of the antenna. However, beside
the gap in transmission, the experimental data hardly
recover the maximal transmission of T = 1, especially
on the high-frequency side. We attribute this to scat-
tering beside the optical axis (as in the gap) which is
stronger for high frequencies. While FDTD-simulations
measures the hemispherical reflection, the experiment

is sensitive to directional reflection, see (section IID).
This feature, together with depolarisation (not captured
by the antenna) explains the reduced transmission of
experimental data versus FDTD-simulations.

The structure of interest is the stealthy hyperuniform
one, shown in the left column of Figure 6. For n = 1.8
(upper row) a dip at f = 0.37 shows up while at n = 2.1
(lower row) the gap is positioned at f = 0.34 and is
20dB for the FDTD simulations and even 30dB for the
experimental data. Here, the shaded blue region not only
averages about 100 different positions of the linear stage
along the optical axis but the tree different orientations
of the cubes. Within the error bars we did neither ob-
serve differences due to the orientations with respect to
the optical axis - as intended by isotropy and numerically
proven in Fig. 3b) - nor due to differences of the orien-
tation with respect to the polarization of the antenna.
Since the reduction in transmission of the experimental
data are significantly stronger in the disordered isotropic
hyperuniform structure compared to the diamond lattice,
it is less due to absorption as due to scattering. This
is also seen in the transmission-data from the reference
structure constructed from a 3D glass (right column),
which completely lacks a photonic band gap, but a signif-
icant reduction of the experimental spectrum compared
to FDTD simulation is visible (with stronger enhance-
ment for the larger refractive index). While both struc-
tures are tetra-valent and look similar by eye, the stan-
dard deviation of the node distance varies significantly:
it is 0.035 a for the hyperuniform pattern and 0.09 a for
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FIG. 6. Results of the macroscopic realizations for two different refractive indices n = 1.8 (upper row) and n = 2.1 (lower row)
for the stealthy hyperuniform structure (left column) and the amorphous sample constructed from structural glass data (right
column). The cubic samples in experiment have a side-length of 10 cm = 10a.

the glass pattern. The same holds for the standard de-
viation of angle distribution of the network which is 9◦

of the stealthy-hyperuniform structure and 14◦ for the
glass pattern. The optimised stealthy and hyperuniform
pattern allows for destructive interference but—unlike in
periodic structures—in all spatial directions.

II. METHODS

A. Sample production with 3D printing

Selective laser sinthering (SLS) offers the possibility
to construct samples from in principle any powder (par-
tially) composed of meltable grains. The only restriction
is the interconnected morphology of the structure,
providing the chance to produce photonic structures
of any kind. The refractive index of the structure is

tunable by carefully choosing the powder constituents.
The 3D printer used in this work is a Sintratec Kit [31].
The meltable grains are made of Nylon (PA12). They
are around 50µm in size and the melting point of
Nylon is approximately 185 ◦C [31]. Those grains were
mixed with grains of (Al2O3) or (TiO2) to increase the
refractive index of the compound material above that
one of PA12. Samples with a maximum sidelength of
100mm can be realized with this specific machine.

Printing protocols of powders with the two different
additives aluminum oxide (Al2O3) and titanium dioxide
(TiO2) are developed similar to the procedure described
in references [24, 32]. The aim is to print structures
of a wide range of refractive indices. The base mate-
rial Nylon (PA12), (C12H23NO)n) has a refractive index
nPA12 ≈ 1.5 in the frequency regime of interest 0.5GHz to
18GHz. Undyed PA12 (AdSint PA12 L nat, Advanc3D
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Materials GmbH) with about 40 µm grain size darkened
with a small amount of carbon black to aid laser absorp-
tion is used for Al2O3 powder mixtures and grey material
from Sintratec with about 50 µm grain size is used for
the TiO2 mixtures. All materials have a small loss tan-
gent [24] in the GHz-regime thus absorption is neglected
in the accompanying numeric investigations. Al2O3 has
nAl2O3 ≈ 3 [33] and material with a grain size of 50µm is
used (product number 007-0160, Final Advanced Materi-
als). TiO2 has an refractive index of nTiO2 ≈ 10 [34, 35]
in the bulk. It is found that the commonly available
nanosized TiO2 of particle sizes around 500 nm tends to
form agglomerates that are difficult to compound with
the PA12. It is also found that it changes the pouring
behavior of the powder such that dense and mechanically
stable final materials are not readily achievable. Kronos
3025 (rutile, KRONOS Worldwide, Inc.) is found to con-
sist of a broad range in size-distribution of the grains.
The nanoparticles are washed out via sedimentation (1 kg
Kronos 3025 stirred in 5 L water, 5min sedimentation
time, 5 repetitions). The remaining particles are dried
and sieved. Grains in the size range 20 µm < d < 180 µm
were selected for the compound material. For the final
compounds, mass ratios of 4 : 1 mAl2O3

: mPA12 and
14.7 : 1 mTiO2

: mPA12 where used, as well as a negligi-
ble amount of carbon black to increase the absorption of
the laser for melting (≤ 1g per 1000g compound).

For microwaves with wavelength in the cm range, the
refractive index of the meta-material is the average of
the refractive indices ni of the components i weighted by
their volume filling fractions ϕi and reads neff =

∑
i ϕini.

However, since the compound material has inclusion of
air, this does not give a reliable effective refractive index,
and we measure it instead with a time of flight based
measurement: the time difference ∆t between two mi-
crowave signals reflected at the front and at the back
of the structure of length L relates to the (average) re-
fractive index nexp of the structure via nexp = c∆t/2L.
∆t is obtained by measuring the peak distance of the
Fourier-transformed S11-signal of the vector network
analyser.

B. Measurement of transmission spectra

In order to measure the transmittance through a pho-
tonic structure, a two port network is set up with a
vector network analyzer (VNA, HP8719D, 0.05GHz to
13.5GHz). Two identical antennas (Aaronia PowerLOG
70180, 0.7GHz to 18GHz) emit (and receive) the signal
and the sample is place in between both antennas in the
wave-guide. The wave-guide of width 10 a and a length
of 1 m is used to reduce scattering of the electromag-
netic wave in all directions beside the optical axis. It
includes metallic shield acting as aperture of 1m× 1m at
both sides of the wave-guide as sketched in (Figure 4), to
avoid a short-cut of the electromagnetic wave bypassing
the sample. The antennas emit electromagnetic waves of

linear polarization which defines the y-axis and the wave-
guide is oriented along the z-axis. To calculate the trans-
mittance, the transmission coefficients with a sample in
the guide is measured and squared to get the intensity.
This intensity is normalized by the corresponding value
of the spectrum without sample in the guide, to elimi-
nate the specific features of the antenna and the wave-
guide. To further average interference effects within the
wave-guide, a linear stage is used that positions one an-
tenna within a 250mm range. The total transmittance
is taken as the average measurements of transmission
S12 = S21 := t for various different positions of the emit-
ting antenna. The spectra presented in Figure 5 and
Figure 6 are averaged about a hundred different posi-
tions. Based on the finit size of the antenna and using
the wave-guide with shield, only a small fractions of the
whole half space is detected. Thus, R measures the di-
rectional reflection.

C. Refractive index

By applying the Fourier transform to a reflection S-
parameter (s11 or s22) as a function of frequency one can
study its behavior in the time domain. The maximum
frequency of the VNA dictates the time resolution and
the frequency resolution dictates the maximum time that
can be studied due to the inverse nature of the Fourier
transform. In doing so, the impedances of the system can
be evaluated. Any peak in the time domain indicates an
impedance step like in time of flight measurements. Since
the geometry of the setup and the sample is well known,
the spectrally averaged refractive index neff via neff = ct

2L
can be extracted, where L is given by the linear size of the
sample and the corresponding peaks in the time domain
are the discontinuities in impedance at the front and back
side of the sample. The factor of 2 arises since the sig-
nal runs back and forth to the VNA. Together with the
volume fraction, neff gives the high refractive index with
the uncertainty δn = n

(
δt
t + δL

L

)
. This method provides

a constant value for n and dispersion is not accounted
for. The refractive index of the compound material of
PA12 with (Al2O3) was determined to be n = 1.83±0.35
and that of PA12 with (TiO2) to 2.15 ± 0.38. Since the
uncertainty is large, the spectra are compared with nu-
meric results of transmission spectra of the diamond lat-
tice, where the refractive index was varied in steps of
∆n = 0.1 (section IID). Best agreement was found for
nAl2O3

= 1.8 and nTiO2
= 2.1.

D. Simulations of transmission spectra

Finite difference time domain (FDTD) simulations
with the ab-initio implementation of the software
package MIT Electromagnetic Equation Propagation
(meep) [36] are performed in order to simulate the
transmittance through a well defined structure.
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The structure is represented as a spatially varying
refractive index n(r⃗) =

√
ε(r⃗) relative to the refractive

index of the vacuum n = 1. Dimensionless length units
denoted by 1 a are chosen. The structure of interest
is sized to a cube with 10 a side length as in experi-
mental investigations. A 2 a cladding of air is added
in z-direction at both sides in which the source plane
and flux plane lies which detects the passing intensity.
Another 2 a cladding of absorbing material is added in
z-direction at both sides. This ensures that radiation is
not scattered back onto the sample. Metallic boundary
conditions are chosen, resembling the experimental
setup. The software then divides the geometry into a
grid whereon the electromagnetic field is calculated for
each timestep based on the previous fields strengths.

The source is set to emit a plane wave with aGaussian
distribution in frequency. The reflection and trans-
mission can be extracted as function of frequency by
Fourier transforming the signal at the respective flux
plane. The frequency is given in units of speed of light
per length and denoted as c/a. As for experimental spec-
troscopy methods, the data of a reference run without
sample is done in order to normalize the data for each
sample with the characteristic features of the source and
the box. Loss is experienced only as finite time effect,
since only the real part dielectric permittivity is used;
due to the finite simulation time, radiation can still be
trapped in the structure. Therefore the simulation has to
run for a sufficiently long time and 1000 timesteps have
proven to suffice. For low frequencies (long wavelengths)
the simulations do not converge and results only above
about 0.1 c/a are regarded as physically reasonable. At
high frequencies (short wavelengths) the noise due to a
finite resolution becomes larger and a compromise be-
tween finite computational expense and spacial accuracy
needs to be found. A resolution in the range of 15 a−1

to 20 a−1 has proven to be a reasonable value. Note that
the reflectance calculated this way includes all intensity
that is redirected in general backward direction towards
the source, including those scattered beside the Pointing-
vector of the original plane wave. Thus, R measures the
hemispherical reflection.

III. CONCLUSION

Three different photonic structures in the microwave
range were constructed by 3D laser printing of a
compound material. The structures of interest is a
stealthy-hyperuniform one which was optimized to
show an isotropic photonic band gap for sufficiently
large refractive index. A diamond structure with well
known but anisotropic band structure and a amorphous
structure constructed from a 3D glass former were

investigated as reference. For all three structures, the
transmission spectra were measured in a wave-guide,
using horn-antennas and a vector network analyser. The
spectra were compared to finite difference time domain
calculations (FDTD), where Maxwell’s equations are
solved numerically on a grid and to a priory band
structure calculations.

The diamond structure shows a clear gap in the (100)
and (111) direction, depending on orientation and in-
creasing with refractive index, as expected. The stealthy
hyperuniform structure shows a dip in transmission
for nexp = 1.8 ± 0.35 and an isotropic band gap for
nexp = 2.1± 0.38: the transmittance is reduced by three
orders of magnitude and recovers almost two orders of
magnitude back above the gap in the high frequency
range. Thus it performs almost as well as the diamond
along a symmetry axis. Furthermore the gap opens at a
moderate refractive index - stealthy hyperuniformity is
key to produce a gap for parameters more easily found
in materials in the microwave or optical range.

The reduction in transmission of up to three orders
of magnitude in the gap is true for rather small sam-
ples with ten nodes in linear dimensions. Doubling the
structure in length will square the result. For both non-
periodic structures, the hyperuniform and the glassy one,
the transmittance does not recover 100 in the high fre-
quency range, neither in the experimental data where
absorption can take places, nor in the simulations which
lacks absorption in our model. This is attributed to the
residual disorder of the structures which scatter inten-
sity into the 4π space, not captured by the detector. An
analysis of scattering by defects in the small wavelength
spectrum in woodpile structures is given in [37]. While
looking very similar by eye, the completely disordered
glass structure does not show a gap at all, as expected.
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